

PANEL 4 Electric AC Highspeed Rail Services

Railenergy Final Conference

Brussels November 25th,2010

Paolo Marchetti & Fabio Orazi Trenitalia S.p.A.

- Introduction to Electric Highspeed Rail Services
- Overview European Highspeed Rail Services
- Focus on Trenitalia Highspeed Rail Services
- Energy Efficiency vs Highspeed Rail Services Evolution
- Focus on Railenergy Technologies
- Ambitions & Recommendations

Introduction to Electric Highspeed Rail Services

High-speed rail (HSR) is a type of passenger rail transport that operates significantly faster than the normal speed of rail traffic

_ specially built high-speed lines equipped for speeds generally equal to or greater than 250 km/h, _ specially upgraded high-

speed lines equipped for speeds of the order of 200 km/h,

_ specially upgraded highspeed lines which have special features as a result of topographical, relief One particular aspect of operating conditions is the signalling system. With line side signals being no longer usable for rail services faster than 200 km/h incab signalling is necessary to operate at high speed

_ Class 1: Rolling stock having a maximum speed equal to or greater than 250 km/h.

_ Class 2: Rolling stock having a maximum speed of at least 190 km/h but less than 250 km/h.

Overview European Highspeed Rail Services

The current European high-speed network comprise approximately 7.000 km with high speed services mainly operating on AC

- AC 15 kV (16.7 Hz)
- AC 25 kV (50 Hz, single feeding 1 x 25kV)

In certain areas high speed trains share the network with conventional rail and run on the DC network.

Example: Thalys Service form Cologne (Germany) via Brussels (Belgium) to Paris (France)

AC 15 kV (16.7 H	Hz) DC	AC 25 kV (50 Hz) DC AC 25	5 kV (50 Hz) DV	AC 25 kV (50 Hz)	DC
Germany		Belgium		France	
Cologne	Aachen	Liège	Brussels		Paris
AC 15 kV (16.7 Hz)					
	AC 25 kV (50 Hz)				
	DC 3kV				

4

Overview European Highspeed Rail Services

How will the market change? CURRENT FUTURE

7 thousand km of lines

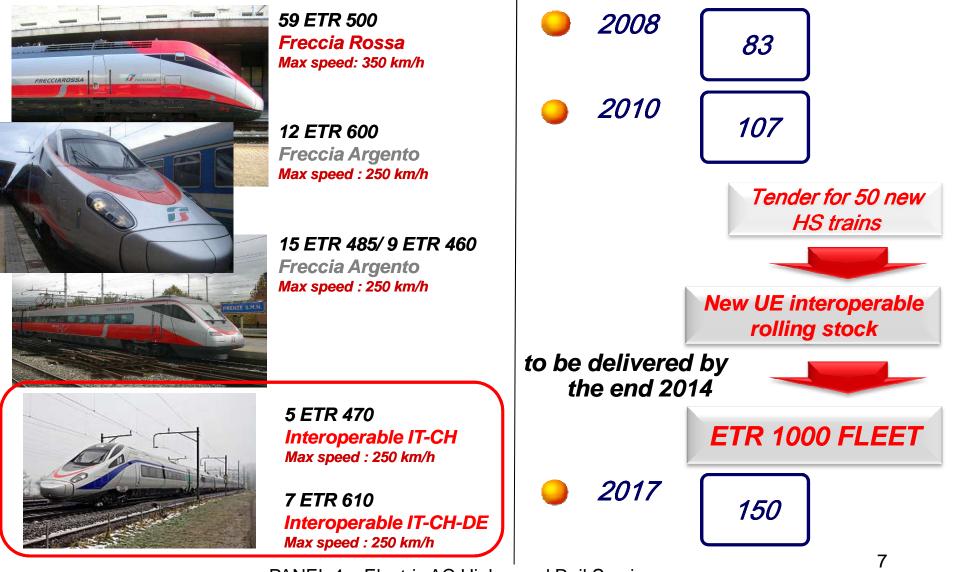
Domestic (France, Italy, Spain) more than international market but ...

Image: main international connections competing with air transport services

A transeuropean network will be completed in the future (10-15 years)

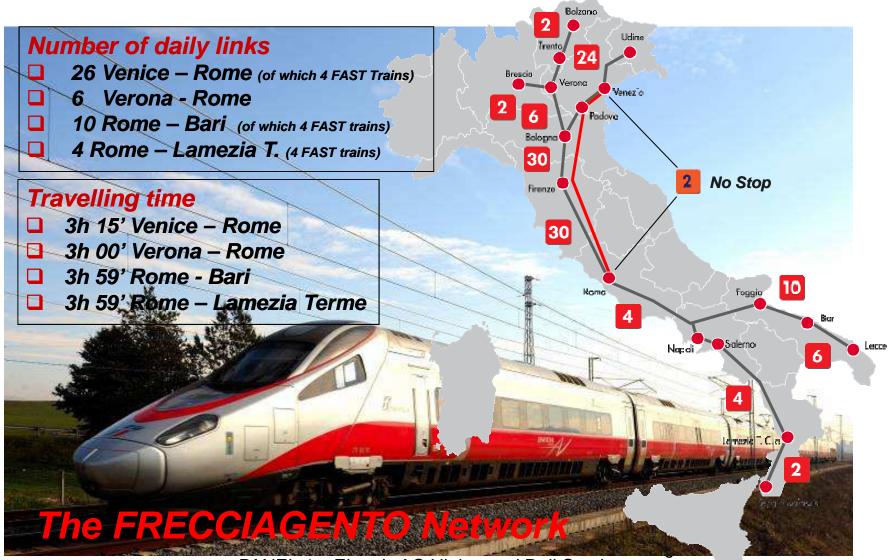
Important national components will still remain

Overview European Highspeed Rail Services


The European high speed rail network is expected to grow significantly including Eastern Europe and to become an interoperable pan-European rail network.

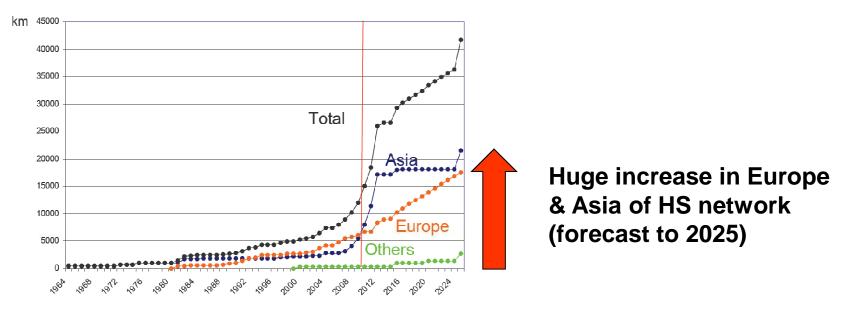
A harmonized European energy supply system is not foreseen at the moment. However, the efficiency of the electricity supply systems are foreseen to gradually improve due to normal upgrading, e.g. from 1x25kV to 2x25kV systems.

Focus on Trenitalia Highspeed Rail Services



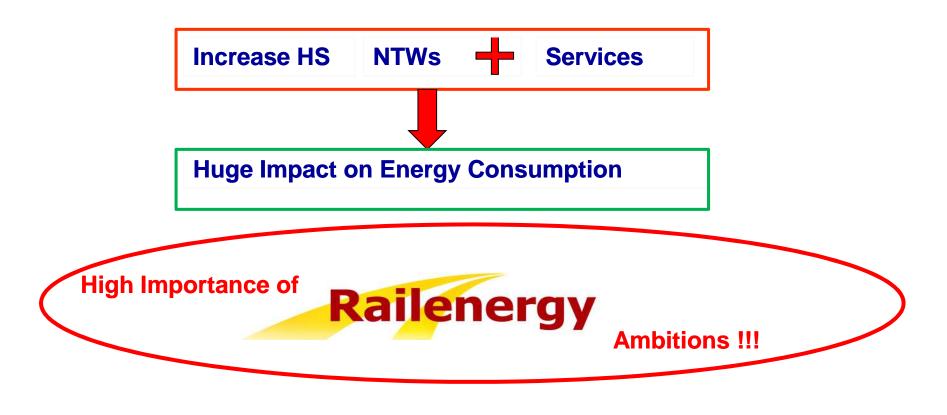
Focus on Trenitalia Highspeed Rail Services

Focus on Trenitalia Highspeed Rail Services



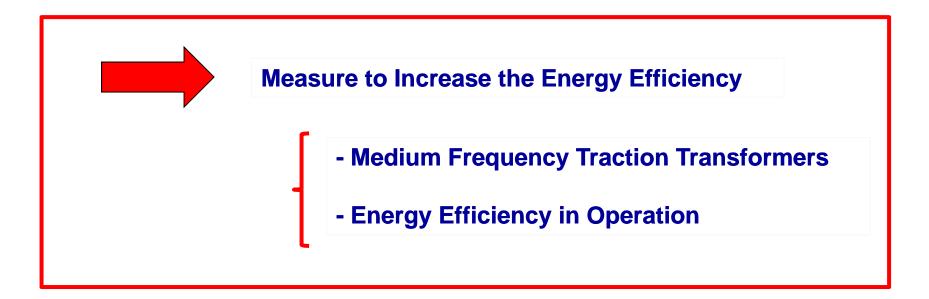
PANEL 4 – Electric AC Highspeed Rail Service

Energy Efficency vs Highspeed Rail Services Evolution


Expected evolution of the world HS network

Europe	from 7.000 Km to 18.000 Km	157%
Asia	from 7.000 Km to 22.000 Km	214%
Worldwide	from 15.000 Km to 42.000 Km	180%

Energy Efficency vs Highspeed Rail Services Evolution



Europe	from 7.000 Km to 18.000 Km	157%
Asia	from 7.000 Km to 22.000 Km	214%
Worldwide	from 15.000 Km to 42.000 Km	180%

Energy Efficency vs Highspeed Rail Services Evolution

Focus on important activities performed during the RAILENERGY PROJECT

Then will follow an overview about the Ambitions & Recommendations for RAILENERGY technology for HS Rail Services

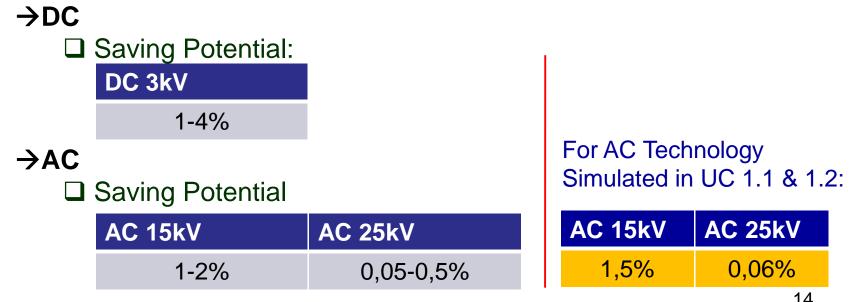
Converter control technology is very promising for upgraded and new vehicles - losses reduction in traction inverter and motor during coasting phase (software)

- □ Saving potential is independent on power supply type (applicable for all electric traction)
- □ It is influenced by the percentage of coasting.

	AC 15kV	AC 25kV	DC 3kV	
	1-4%			
MV Load Management is highly promising - control				

loads of cooling systems especially when maximum performance is not required (software)

- \Box for refurbishment \rightarrow requiring software changes only
- detailed investigation of hardware changes are


required

Reduced Line Impedances Could be promising if increased capacity is needed – increasing conductivity either by enlarge the cross section or using an additional conductor

□ the benefit in applying this technology needs a specific calculations about energy/copper price ratio. Today lifetime energy losses are not integrated into the standard dimensioning process for new and upgraded infrastructure systems

Superconducting transformers and inductances could be

promising – reduce loss using High-Temperature Superconductor

□ Furter studies are necessary to validate the Saving Potential.

Technology Simulated in UC: Considerable Saving Potential

AC 15kV	AC 25kV
6%	4,1%

Medium frequency energy distribution is an interesting technology - exchange classical transformer with 4quadrant converter

Saving Potential		For AC Technology Simulated in UC 1.1 1.2:		
AC 15kV	AC 25kV	AC 15kV AC	25kV	
3-5%	2-4%	4,3%	2,2%	

Thank you!

Paolo MARCHETTI Trenitalia S.p.A. p.marchetti@trenitalia.it Fabio ORAZI Trenitalia S.p.A. <u>f.orazi@trenitalia.it</u>