PANEL 4
Electric AC Highspeed Rail Services

Railenergy Final Conference
Brussels
November 25th, 2010

Paolo Marchetti & Fabio Orazi
Trenitalia S.p.A.
Index

- Introduction to Electric Highspeed Rail Services
- Overview European Highspeed Rail Services
- Focus on Trenitalia Highspeed Rail Services
- Energy Efficiency vs Highspeed Rail Services Evolution
- Focus on Railenergy Technologies
- Ambitions & Recommendations
High-speed rail (HSR) is a type of passenger rail transport that operates significantly faster than the normal speed of rail traffic.

One particular aspect of operating conditions is the signalling system. With line side signals being no longer usable for rail services faster than 200 km/h in-cab signalling is necessary to operate at high speed.

- specially built high-speed lines equipped for speeds generally equal to or greater than 250 km/h,
- specially upgraded high-speed lines equipped for speeds of the order of 200 km/h,
- specially upgraded high-speed lines which have special features as a result of topographical, relief

Class 1: Rolling stock having a maximum speed equal to or greater than 250 km/h.
Class 2: Rolling stock having a maximum speed of at least 190 km/h but less than 250 km/h.
The current European high-speed network comprise approximately 7,000 km with high speed services mainly operating on AC

- AC 15 kV (16.7 Hz)
- AC 25 kV (50 Hz, single feeding 1 x 25kV)

In certain areas high speed trains share the network with conventional rail and run on the DC network.

Example: Thalys Service from Cologne (Germany) via Brussels (Belgium) to Paris (France)

- AC 15 kV (16.7 Hz)
- DC 3kV
- AC 25 kV (50 Hz)
- DC
How will the market change?

CURRENT

- 7 thousand km of lines
- Domestic (France, Italy, Spain) more than international market but …
- … main international connections competing with air transport services

FUTURE

- A transeuropean network will be completed in the future (10-15 years)
- Important national components will still remain
The European high speed rail network is expected to grow significantly including Eastern Europe and to become an interoperable pan-European rail network.

A harmonized European energy supply system is not foreseen at the moment. However, the efficiency of the electricity supply systems are foreseen to gradually improve due to normal upgrading, e.g. from 1x25kV to 2x25kV systems.
Focus on Trenitalia
High Speed Rail Services

59 ETR 500
Freccia Rossa
Max speed: 350 km/h

12 ETR 600
Freccia Argento
Max speed: 250 km/h

15 ETR 485/9 ETR 460
Freccia Argento
Max speed: 250 km/h

Tender for 50 new HS trains

New UE interoperable rolling stock

to be delivered by the end 2014

5 ETR 470
Interoperable IT-CH
Max speed: 250 km/h

7 ETR 610
Interoperable IT-CH-DE
Max speed: 250 km/h

ETR 1000 FLEET

2008
83

2010
107

2017
150

PANEL 4 – Electric AC Highspeed Rail Service
Focus on Trenitalia
Highspeed Rail Services

the FRECCIAROSSA network

Number of daily links
- 68 Milan - Rome
- 35 Milan - Naples
- 14 Turin - Rome
- 4 Milan – Salerno

No - stop links
- 2h 45’ Rome Tib. – Mi Rog.
- 3h 39’ Rome Term. – Milan C.le.

Travelling time
- 37’ Bologna - Firenze
- 60’ Turin – Milan
- 70’ Rome – Naples
- 4h 10’ Milan – Naples
- 4h 10’ Turin - Rome
Focus on Trenitalia
Highspeed Rail Services

Number of daily links
- 26 Venice – Rome (of which 4 FAST Trains)
- 6 Verona - Rome
- 10 Rome – Bari (of which 4 FAST trains)
- 4 Rome – Lamezia T. (4 FAST trains)

Travelling time
- 3h 15’ Venice – Rome
- 3h 00’ Verona – Rome
- 3h 59’ Rome - Bari
- 3h 59’ Rome – Lamezia Terme

The FRECCIAGENTO Network

PANEL 4 – Electric AC Highspeed Rail Service
Energy Efficiency vs Highspeed Rail Services Evolution

Expected evolution of the world HS network

<table>
<thead>
<tr>
<th>Region</th>
<th>Distance</th>
<th>Increase</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe</td>
<td>7.000 Km</td>
<td>18.000 Km</td>
<td>157%</td>
</tr>
<tr>
<td>Asia</td>
<td>7.000 Km</td>
<td>22.000 Km</td>
<td>214%</td>
</tr>
<tr>
<td>Worldwide</td>
<td>15.000 Km</td>
<td>42.000 Km</td>
<td>180%</td>
</tr>
</tbody>
</table>

Huge increase in Europe & Asia of HS network (forecast to 2025)
Energy Efficiency vs Highspeed Rail Services Evolution

Increase HS NTWs + Services

Huge Impact on Energy Consumption

High Importance of Railenergy

<table>
<thead>
<tr>
<th>Region</th>
<th>Distance Range</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe</td>
<td>from 7.000 Km to 18.000 Km</td>
<td>157%</td>
</tr>
<tr>
<td>Asia</td>
<td>from 7.000 Km to 22.000 Km</td>
<td>214%</td>
</tr>
<tr>
<td>Worldwide</td>
<td>from 15.000 Km to 42.000 Km</td>
<td>180%</td>
</tr>
</tbody>
</table>

Ambitions !!!
Focus on important activities performed during the RAILENERGY PROJECT

Measure to Increase the Energy Efficiency

- Medium Frequency Traction Transformers
- Energy Efficiency in Operation

Then will follow an overview about the Ambitions & Recommendations for RAILENERGY technology for HS Rail Services
Converter control technology is very promising for upgraded and new vehicles - losses reduction in traction inverter and motor during coasting phase (software)

- Saving potential is independent on power supply type (applicable for all electric traction)
- It is influenced by the percentage of coasting.

<table>
<thead>
<tr>
<th></th>
<th>AC 15kV</th>
<th>AC 25kV</th>
<th>DC 3kV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1-4%</td>
</tr>
</tbody>
</table>

MV Load Management is highly promising - control loads of cooling systems especially when maximum performance is not required (software)

- for refurbishment → requiring software changes only
- detailed investigation of hardware changes are required

<table>
<thead>
<tr>
<th></th>
<th>AC 15kV</th>
<th>AC 25kV</th>
<th>DC 3kV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-4%</td>
</tr>
</tbody>
</table>
Reduced Line Impedances **Could be promising if increased capacity is needed** – **increasing conductivity either by enlarge the cross section or using an additional conductor**

- the benefit in applying this technology needs a specific calculations about energy/copper price ratio. Today lifetime energy losses are not integrated into the standard dimensioning process for new and upgraded infrastructure systems

→ DC

- Saving Potential:
 - **DC 3kV**
 - 1-4%

→ AC

- Saving Potential
 - **AC 15kV**
 - 1-2%
 - **AC 25kV**
 - 0,05-0,5%

For AC Technology Simulated in UC 1.1 & 1.2:

<table>
<thead>
<tr>
<th></th>
<th>AC 15kV</th>
<th>AC 25kV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,5%</td>
<td>0,06%</td>
<td></td>
</tr>
</tbody>
</table>

PANEL 4 – Electric AC Highspeed Rail Service
Superconducting transformers and inductances could be promising – reduce loss using High-Temperature Superconductor

- Further studies are necessary to validate the Saving Potential.

Technology Simulated in UC: Considerable Saving Potential

<table>
<thead>
<tr>
<th></th>
<th>AC 15kV</th>
<th>AC 25kV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium frequency energy distribution is an interesting technology - exchange classical transformer with 4quadrant converter</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Saving Potential

<table>
<thead>
<tr>
<th></th>
<th>AC 15kV</th>
<th>AC 25kV</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-5%</td>
<td>2-4%</td>
<td></td>
</tr>
</tbody>
</table>

For AC Technology Simulated in UC 1.1 1.2:

<table>
<thead>
<tr>
<th></th>
<th>AC 15kV</th>
<th>AC 25kV</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3%</td>
<td>2.2%</td>
<td></td>
</tr>
</tbody>
</table>
The End

Thank you!

Paolo MARCHETTI
Trenitalia S.p.A.
p.marchetti@trenitalia.it

Fabio ORAZI
Trenitalia S.p.A.
f.orazi@trenitalia.it