

Panel 4 – Electric AC High Speed Services

Medium-Frequency Traction Transformer – Outcome of Railenergy

Jan Weigel, Siemens AG

Final Conference, Brussels November 25th, 2010

Medium-Frequency Traction Transformer

Agenda

- o Basic Concept
- Overview of Components
- Investigation of MF-DC/DC Converter
- o Energy Efficiency
- Application Aspects
- o Summary

Basic Concept

Conventional

Transformer efficiency is negatively influenced by

- Weight constraints
- Space constraints

However – it still remains heavy and large

Medium frequency technology

Conventional transformer substituted by HV converter comprising

- Line choke
- series connected converters
- MF DC/DC converters (high power density)

Jan Weigel, Siemens AG

Final Conference, Brussels November 25th, 2010

Basic Concept

Conventional

Transformer efficiency is negatively influenced by

- Weight constraints
- Space constraints

However – it still remains heavy and large

Medium frequency technology

Conventional transformer substituted by HV converter comprising

Advantages

- o Efficiency↑
- o Weight↓
- Scalable platform
- Flexible installation

Jan Weigel, Siemens AG

Final Conference, Brussels November 25^{th} , 2010

Medium-Frequency Traction Transformer

Components – 4QC cascade. line choke

Components – 4QC cascade, line choke

4QC cascade

- o # 15kV/25kV → min. 7/12 stages
- o →3.6kV rated dc voltage
- f_s → low as conventional, however, resulting in a high switching frequency

Line choke

- Line compatibility
- o surges

- → passive
- impedance
- Insulation as for conv. transformer

Components – MF DC/DC converter

- Dual active bridge → bidirectional power flow (drive & energy recovery)
- Pulsating power throughput (harmonic absorber on motor side)
- High power density / small design
 - o f_s^{\uparrow} → transformer weight/size↓
 - High performance cooling
 - Low effort for control
- Series resonant dc/dc-converter (beneficial) → low effort for control of power flow and voltage

Suitable switching frequency f_S for HV IGBTs in soft switched mode?
 Potential of future generations of power semiconductors ?

Lab prototype testing

- Prototype setup in back-to-back mode
 - o Adjustment of...
 - Pulse pattern
 - Magnetizing inductance
 - o Voltage difference
 - o Target
 - Suitable switching frequency @ optimized operation
 - o Suitable utilization and efficiency

D3 木

 $C_{11} = +$

- Important for $f_S \uparrow \rightarrow$ appropriate magnetizing current!
- Suitable switching frequency f_s for HV IGBTs in soft switched mode?
 Potential of future generations of power semiconductors ?

Standard ↔ modified IGBTs

- o e⁻ irradiation → shift trade-off between switching and conduction loss
- Comparison between latest std. and modified IGBTs

• Suitable switching frequency f_S for HV IGBTs in soft switched mode?

Potential of future generations of power semiconductors ?

Components – cooling system

- Pumps (oil, water)
- Fans (liquid \rightarrow air heat exchangers)

Component	Auxiliary power		
Component	Conv. techn.	MF- techn.	
Oil pump	100%	20%	
Fan for oil/air heat exchanger	100%	0%	
Water pump	100%	198%	
Fan for water/air heat exchanger	100%	129%	
Difference between the overall auxiliary power (only cooling, w/o AC and other auxiliary equipment)	100%	103%	

Availability: conventional/MF technology

- Redundancy implemented due to voltage margin required for any defect in the power electronics
- Comp. : Conventional

Jan Weigel, Siemens AG

MF transformer

Availability: conventional/MF technology

- Redundancy implemented due to voltage margin required for any defect in the power electronics
- Comp. : Conventional

MF transformer

Final Conference, Brussels November 25th, 2010

Availability: conventional/MF technology

- Redundancy implemented due to voltage margin required for any defect in the power electronics
- Comp. : Conventional

Jan Weigel, Siemens AG

MF transformer

Promising applications

EE potential of MF- technology by application

Commuter

- Low rated efficiency
- High overload (160% due to reasons of installation space and weight) → average efficiency↓

Medium-Frequency Traction Transformer

drive cycle only

[Source: *]

Promising applications

EE potential of MF- technology by application

Commuter

- Low rated efficiency
- High overload (160% due to reasons of installation space and weight) → average efficiency↓

High speed trains Efficiency restricted by mass and size

requirements

• Mostly close to max. power

Medium-Frequency Traction Transformer

[Source: *]

Promising applications

EE potential of MF- technology by application

Commuter

- Low rated efficiency
- High overload (160% due to reasons of installation space and weight) → average efficiency↓

High speed trains

- Efficiency restricted by mass and size requirements
- Mostly close to max. power

Locos

- Comp. high rated efficiency
- High percentage of partial load \rightarrow efficiency[↑]

[Source: *] Jan Weigel, Siemens AG

Final Conference, Brussels November 25th, 2010

Medium-Frequency Traction Transformer

* Moderne Drehstromantriebstechnik – Stand und Perspektiven, ZEVrail Glasers Annalen

[Source: *]

[Source: *]

 $\rightarrow \otimes$

 $\rightarrow \odot$

 $\rightarrow \odot$

Energy efficiency: Use case 1.1/1.2

Energy efficiency: Use case 1.1/1.2 Results

Operation Mode Only					
ID	Demonstration Scenes	Technologies	Driving mode	Relative Energy Consumpt.(KPlx)	
				%	
1	1 DS 1 UC 1.1 7 (Pass)	Baseline Technology	Cruising	100%	
7		MF Technology (WP 5.3)	Cruising	97.9%	
1	DS 1 UC 1.2 (Pass)	Baseline Technology	All-out running	100%	CADA
5		MF Technology (WP 5.3)	All-out running	95.5	HY
6		Combined New Technology: Reduced Line Impedance (WP 3.3) & MF Technology (WP 5.3)	All-out running	92.1%	Ser.
Operation and parking mode					
1	1 DS 1 UC 1.1 7 (Pass)	Baseline Technology	Cruising	100%	
7		New Technology: Medium Frequency Transformer(WP 5.3)	Cruising	98%	
1	1 5 UC 1.2 6	Baseline Technology	All-out running	100%	
5		MF Technology (WP 5.3)	All-out running	95.8%	
6		Combined New Technology: Reduced Line Impedance (WP 3.3) & MF Technology (WP 5.3)	All-out running	92.4%	

Energy efficiency: true high-speed (AC15kV)

State-of-the-art high speed line

• Specified route Frankfurt/M. – Cologne – Frankfurt/M. (roundtrip)

WP 5.3 – alternative 1

Comparison of energy consumption (drive mode only)

- Specified route Frankfurt Cologne Frankfurt (roundtrip)
- o All-out-running mode

MF-technology conventional

Application aspects

MF transformer technology benefits from

- High percentage of the operating time is at high power
- Highly utilized conventional transformer
- o AC15kV, 16.7Hz
 - Heavy and bulky conv. 16.7Hz transformer (trade-off: weight ↔efficiency)
 - Only 7+1 HV submodules (redundancy)

Benefits of technology cannot be fully exploited if

- High level of energy throughput is at partial load or low load (power on during parking!)
- o AC25kV, 50Hz
 - Conv. 50Hz traction transformer has attractive form factor → can have higher efficiency
 - 12+1 HV-submodules (higher input voltage)

→ high speed trains are very attractive, especially AC15kV...25kV: less → dual system AC15/25kV application is in between

Jan Weigel, Siemens AG

Summary

High speed train:

Conventional AC15kV traction transformer vs. MF-transformer

- MF-transformer increases the efficiency by 3-5%
- MF-transformer saves mass (axle loads!) and can allow new vehicle concepts
- MF- technology can be provided at higher investment cost, but cost for conventional traction transformer will increase (copper and iron price)
- MF- technology reduces energy usage/costs